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Abstract

Minimizing clock wirelength via clock sink location optimization
during placement has been proven effective in reducing the power
consumption of clock trees. Previous works on clock wirelength
minimization only focus on global placement stage and ignore sig-
nificant potential improvement in detailed placement stage. In this
paper, we develop a clock-wirelength-driven detailed placement
flow which achieves co-optimization of signal-net and clock-net
wirelengths. We propose a clock wirelength estimation technique
based on K-means clustering, and adapt cell matching to achieve ef-
fective and explicit clock wirelength reduction. To reduce signal-net
wirelength while preserving sink locations, we further develop cus-
tomized local reordering and global swap techniques. Experimental
results on CLKISPD’05 benchmarks validate the effectiveness of our
approach. Compared with NTUplace3, our detailed placer reduces
clock wirelength by 19% and 12% on legalized placement solutions
that are produced by clock-wirelength-driven global placer and
signal-wirelength-driven global placer, respectively.
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1 Introduction

Power is a major concern in modern integrated circuit (IC) design.
Due to their frequent switching and large load capacitance, clock
networks often account for over 30% of total power consumption in
a processor chip [12]. Therefore, reducing the power consumption
of the clock network is crucial in IC designs. Since longer clock
wirelength results in larger clock capacitance and thus implies
more power consumption for distribution of clock signals [2], total
wirelength is a critical optimization objective in clock tree synthesis
(CTS) [2, 13].

In traditional physical design flow, CTS is performed after the
placement stage when the locations of the clock sinks (latches and
registers) are determined. Considering that the quality of the clock
tree generated by CTS is greatly affected by the input sink locations,
various clock-wirelength-driven placement algorithms have been
proposed to optimize the total wirelength of the clock tree during
global placement. Cheon et al. [6] proposed to cluster registers
based on Manhattan distance and represent these clusters with
bounding boxes to model clock-net wirelength with half-perimeter
wirelength (HPWL). Net weighting is then applied for clock-net
reduction. Wang et al. [19] integrated dynamic virtual clock tree
construction into quadratic placement to obtain attractive force
between registers and sibling internal nodes, which pulls registers
together to reduce clock tree wirelength. Lee et al. [12] introduced
obstacle-aware arboreal attractive force between parent and child
nodes in the virtual clock tree and combined it with SimPL [11]
to minimize the size of the clock tree. A recent work [9] achieved
shorter clock tree wirelength by incorporating clock tree contrac-
tion force into the advanced electrostatics-based nonlinear global
placement algorithm [5].

Our work is motivated by the observation that although it has
been reported that significant total clock wirelength reduction (45.1%
in[9]) can be achieved by clock-wirelength-driven global placement,
the optimized sink locations may be seriously destroyed by a subse-
quent detailed placement stage. We evaluate the impact of detailed
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placement on clock wirelength by running [9] as clock-wirelength-
driven global placer on CLKISPD’05 benchmarks [12], and then
NTUplace3 [4] as detailed placer. Results show that NTUplace3
brings 13% increase in clock tree wirelength. Therefore, it is impor-
tant to consider clock wirelength optimization in detailed place-
ment. However, existing works on detailed placement often focus
on objectives or constraints such as signal-net wirelength [4, 18],
routability [8], GPU acceleration [15] and mixed-cell-height de-
signs [3]. To the best of our knowledge, there is no clock-wirelength-
driven detailed placement work in the literature.

To achieve clock wirelength minimization in detailed placement
stage, there are two major issues that need to be addressed:

o Evaluation of clock wirelength changes after perturbations:
Detailed placement algorithms typically take in a legalized
placement as input and apply perturbations on a set of cells
in every iteration, the gain on preset objectives of each per-
turbation is then evaluated, and the best perturbation which
achieves largest gain is applied. Therefore, in order to reduce
clock tree wirelength during detailed placement, an efficient
method to evaluate the change in clock tree wirelength after
perturbations of cells is necessary. Unfortunately, the strate-
gies used in previous works for estimating partial clock tree
wirelength by 1) HPWL [6], or 2) iterative virtual clock tree
construction [9, 12, 19], in clock-wirelength-driven global
placement are not feasible in detailed placement. First, al-
though HPWL estimates signal-net wirelength reasonably
well, it does not offer accurate estimates of clock-net wire-
length because clock-net routing is very different from signal-
net routing [12]. Furthermore, it is unrealistic to perform
virtual clock tree construction to evaluate wirelength change
after each perturbation of cell locations because there are
usually hundreds of thousands of perturbations to be evalu-
ated in one detailed placement iteration [4], and the runtime
cost for virtual clock tree construction would be unaccept-
able.

o Co-optimization of clock and signal-net wirelengths: Since
clock sinks are connected to both clock-nets and signal-
nets, attempts to minimize clock-net wirelength by altering
sink locations could bring increase in signal-net wirelength,
which is not desired. Previous works on clock-wirelength-
driven global placement achieves co-optimization of clock-
net and signal-net wirelengths by applying additional clock-
force [12] or adding clock tree wirelength into the original
nonlinear optimization objective function [9]. These strate-
gies are highly coupled with the characteristics of their re-
spective global placer, and can not be easily transferred to
detailed placement stage.

In this paper, we propose ideal approaches to address these two
issues and present a clock-wirelength-driven detailed placement
flow. We propose a novel method to partition the clock tree into
subtrees (partial clock trees) and estimate the change in subtree
wirelength after perturbing cell locations. Based on this method,
we propose several effective detailed placement techniques for
simultaneous optimization of clock tree wirelength as well as signal-
net wirelength. Our algorithm can be applied either independently
on legalized results by signal-wirelength-driven global placement
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algorithms, or as a part of a complete clock-wirelength-driven
placement flow.
The main contributions of our work are summarized as follows:

e We propose an efficient and accurate method to estimate
wirelength of partial clock tree in a legalized placement
solution based on K-means clustering.

e We propose a cell matching technique which is capable of
simultaneous optimization of both clock-net wirelength and
signal-net wirelength based on partial clock tree wirelength
estimation.

e We propose a clock-aware local reordering technique and
a clock-aware global swap technique to reduce signal-net
wirelength without increasing the total wirelength of the
final clock tree.

e Experimental results validate the effectiveness of our pro-
posed algorithm with 19% less clock tree wirelength com-
pared with the widely used detailed placer NTUplace3[4] on
placement solution produced by a clock-wirelength-driven
global placer. Furthermore, our algorithm decreases clock
tree wirelength by 12% when applied on placement solution
produced by a signal-wirelength-driven global placer.

The rest of this paper is organized as follows. Section II pro-
vides the problem formulation. Section III describes the overview
of our clock-wirelength-driven detailed placement algorithm and
the techniques used in our detailed placement algorithm in details.
Experimental results and discussions are presented in Section IV,
and Section V concludes this paper.

2 Problem Statement

The input of clock-wirelength-driven detailed placement problem
is a legalized row-based standard cell placement of circuit G(V, E),
where V = {01, 0y, ..., 0 } is the set of all cells and E = {eq, e, ..., em }
is the set of m singal-nets. Let V;- denote the set of all clock sinks
in the circuit, and we have V, € V. We denote the final clock tree
by T, which is a special net consists of all sinks. In this work, we
assume there is only one clock source in the circuit. The placeable
segments are the rows specified in the placement region. When
there are fixed macros, the rows blocked by macros are sliced into
new rows to generate placeable segments.

Our primary objective in clock-wirelength-driven detailed place-
ment is to reduce the total wirelength of the final clock tree T by
adjusting sink locations while satisfying the legality constraint.
Altering sink locations could cause change in signal-net wirelength
because sinks are also connected to signal-nets. And our secondary
objective is to reduce or preserve the optimized signal-net wire-
length in the input placement, which is evaluated with HPWL

HPWL = Z ( max |x,~ —xj| + max |yi - yjl 1)
ecE

v;,0;€e v, 0j€e

where x;, y; denote the x and y coordinates of v;.

The output of clock-wirelength-driven detailed placement is
another legalized placement of circuit G(V, E) with optimized sink
locations.
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3 Clock-Wirelength-Driven Detailed Placment
Algorithm

The overall flow of our clock-wirelength-driven detailed placement
algorithm is presented in Fig. 1. Given a legalized placement result,
we first apply K-means clustering to obtain sink clusters and win-
dows (bounding boxes) of the clusters. We then minimize clock wire-
length with clock-wirelength-driven cell matching in each window
of the sink clusters in the first loop. In the second loop, clock-aware
local reordering and global swap are called iteratively until there is
no significant improvement in signal-net wirelength. The proposed

L Legalized placement result |
¥
Detailed placement

I Sink clustering I
1
-'| Clock-wirelength-driven cell matching I

I}
| Placement result |

Figure 1: Our clock-wirelength-driven detailed placement
flow.

detailed placement algorithm consists of four key techniques: wire-
length estimation for partial clock tree, clock-wirelength-driven
cell matching, clock-aware local reordering and clock-aware global
swap. In wirelength estimation for partial clock tree, we partition
all clock sinks into many small subsets, and estimate the wirelength
of sub-clock-trees in each subset. Then a clock-wirelength-driven
window-based cell matching technique is applied on each subset
to optimize the wirelength of the sub-clock-trees in the subset. To
ensure that the clock wirelength does not deteriorate when minimiz-
ing signal-net wirelength, we propose clock-aware local reordering
and clock-aware global swap. Clock-aware local reordering solves
for the best order in terms of signal-net wirelength for a group
of consecutive standard cells within placeable segments. And to
further explore the global solution space, clock-aware global swap
technique tries to find a position for sinks and normal standard cells
inside their respective optimal regions. In the following subsections,
we will present the details of the aforementioned four techniques.

3.1 Wirelength Estimation for Partial Clock
Tree

In this section, we present our method of wirelength estimation for

partial clock tree that can evaluate the clock wirelength change in

an accurate way, without time-consuming CTS after perturbation
of sink locations during detailed placement. Thus, it enables the
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detailed placer to decide whether to accept a perturbation according
to its impact on clock wirelength.

There are two unique characteristics of clock-net that make
it hard for us to use simple net models (such as the HPWL) for
signal-net wirelength estimation to estimate the total wirelength of
a complete clock tree. First, the size of the clock-net is significantly
larger than most signal-nets. As reported in [6], on average 14.65%
of cells in industrial designs are sinks that are connected to the
clock-net, while the majority of signal-nets are two-pin nets. Second,
clock-net routing considers clock skew as a crucial objective, thus
requires longer routes to ensure low skew, which is very different
from signal-net routing [12].

Therefore, our idea is to first partition the large clock-net into
smaller sub-nets. Next, we approximate the wirelength of the sub-
clock-trees with more accurate metrics than HPWL. Fig. 2 provides
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Figure 2: Steps for wirelength estimation of partial clock
tree. (a) K-means clustering of sinks. (b) Subtree wirelength
estimation with total Manhattan distance to centroid in each
subset.

an illustration of our method. Inspired by recent works on CTS [7,
13], we apply K-means clustering to partition V; into K subsets,
with the assumption that sinks in the same subset are in the same
subtree (partial clock tree) of the final clock tree. We denote the set
of all subsets by U = {uy, uy, ..., ux }, and the subset that includes
sink v; by CL(v;). Let DTC(v;) denote the Manhattan distance from
sink v; to the centroid of CL(v;), and the x (y) coordinate of the
centroid of a subset is the mean of the x (y) coordinates of all the
sinks in that subset. The wirelength of the subtree WL(u;) in each
subset u; is then approximated as follows:

WL(u;) = Z DTC(vj) @)
vj€EU;

Compared with HPWL, our method compensates for the extra
wirelength for skew control in clock-net routing and provides more
accurate approximation. The accuracy of our method is closely
related to the choice of K. Intuitively, increasing K would decrease
the average size of the subtrees in each cluster and improve the
accuracy of wirelength estimation. However, larger K also leads
to significantly longer runtime for running K-means clustering.
In this work, we adopt the implementation of K-means clustering
in ALGLIB[1], and we set K = |V,|/20 for best balance between
estimation accuracy and runtime. Furthermore, it should be pointed
out that although we ignore load capacitance of sinks and only
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consider Manhattan distance during K-means clustering, it is easy
to apply weight-balanced K-means clustering [7] instead of the
vanilla K-means clustering, and take load capacitance as weight.

3.2 Clock-Wirelength-Driven Cell Matching

With the subsets obtained through K-means clustering in Sec-
tion 3.1, we then reduce total wirelength of the final clock tree
by minimizing the individual total wirelength of the subtree in each
subset. We adapt the window-based cell matching algorithm [4] for
this task, which is a widely used and effective detailed placement
technique[15]. During window-based cell matching, a set of cells
with same width in a given window are extracted in each iteration
and removed from the positions they were in to form a correspond-
ing set of empty slots. We then compute the cost of assigning cells
in the cell set to each slot in the empty slot set and find the opti-
mal assignment that minimizes the total cost by solving a bipartite
matching problem. In the end, the cells are re-inserted into the
empty slots following the optimal assignment.

We iteratively apply window-based cell matching on each of the
subsets obtained in Section 3.1, and the window of a subset is set
to be the bounding box of all sinks in that subset. Fig. 3 gives an
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Figure 3: Apply cell matching on bounding boxes of sink
clusters. (a) Cells extracted for matching (colored in red) in
the window. (b) The bipartite graph constructed to find the
best assignment. S; denotes the empty slot which is originally
occupied by cell v;.

example of the procedure. We treat clock sink cells and normal cells
identically when extracting cells from the window, and we switch
to the next subset of sinks until all movable cells in one window
are extracted. In our experiment, the maximum number of cells
extracted each time is set to 90 for best performance. During the
construction of the bipartite matching problem, unlike the previous
works [4] that take HPWL as cost, we compute the cost ¢;; of
assigning cell v; to slot s; as

a - |Ey| - DTC(v;) + (1 — ) - HPWL(v;),0; € V,r
cij = (©)

HPWL(07),0; ¢ Vy

where E;, denotes the set of all signel-nets incident to v; and
HPWL(v;) is the sum of HPWL of all nets in E,,. We apply |E,,| asa
scaling factor of DTC(v;) because DTC(v;) is usually much smaller
than HPWL(v;). @ is a tunable factor for adjusting the weight of
DTC(v;) in the cost function. We then solve the bipartite matching
problem with the shortest augmenting path algorithm [10] and
assign cells to their best slots respectively. By solving for the best
cell matching result with the cost function defined in Eq. (3), the
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detailed placer can reduce HPWL as well as WL (u;) for each cluster
u;j. Furthermore, we can adjust the placer’s emphasis on clock tree
wirelength reduction by tuning the factor a. When the improve-
ment of one cell matching run in one window becomes marginal in
later iterations, we switch to only extracting independent cells [15]
in one window for further optimization.

3.3 Clock-Aware Local Reordering

Our clock-wirelength-driven cell matching technique presented in
Section 3.2 can explicitly reduce the estimated clock wirelength
at the cost of a slight performance loss in signal-net wirelength
optimization. To compensate for that, we employ a clock-aware
local reordering technique, which reduces signal-net wirelength
and does not change sink locations. Therefore, the optimized result
obtained in Section 3.2 is preserved.

Local reordering [4] is based on a sliding window, which slides
through the cells in each placable segment and finds the best permu-
tation of the k cells included in the window at each step. However,
in our implementation, to preserve sink locations during local re-
ordering, we exclude sink cells when the sliding window moves
along each placable segment. Fig. 4 shows the idea of our strategy.

TN T 1T
VAN N

klafd  [x] 2 [s4
pls[rlg [ 2 [1l4

Figure 4: Clock-aware local reordering with sliding window
(red rectangle). Sink cell is colored with blue.

A sink cell divides the consecutive cells in the placable segment
into two groups, and we apply local reordering sequentially on
each group of cells. In our work, the value of k is set to 3 for best
efficiency.

3.4 Clock-Aware Global Swap

Although our clock-wirelength-driven cell matching (see Section 3.2)
achieves co-optimization of clock-net wirelength and signal-net
wirelength, it only explores the solution space in the given window,
which has a limited size in trade for the accuracy of wirelength
estimation for a partial clock tree. And the clock-aware local re-
ordering presented in Section 3.3 has an even more local view with
only exchanges between several consecutive cells. On top of these
two techniques, we further propose a clock-aware global swap
technique that aims at globally reducing signal-net wirelength by
directly moving cells to their optimal regions while keeping the
optimized clock tree wirelength intact.

The total HPWL of all the nets incident to a cell v; is minimum
when v; is placed in its optimal region while all other cells in the
circuit are fixed. In our work, the optimal region for a cell v; € V is
calculated as that in [18]. Then, we search in the optimal region to
find a position to insert v;, which is achieved by swapping v; with
an empty slot or another cell with same width in the optimal region.



Clock-Wirelength-Driven Detailed Placement

However, when v; is a sink cell, moving v; into its optimal region
may cause v; to leave the bounding box of CL(v;) and lead to an
potential increase in clock tree wirelength. Let B denote the HPWL
change after the swap (B < 0 if HPWL decreases after the swap),
and v; denote the cell or slot chosen for swap. Since global swap
involves sinks may cause increase in clock tree wirelength, we need
to carefully decide whether to accept each swap. Our strategies for
choosing cells (slots) for swap are described as follows:

(1) If v; is a normal cell, and v; is also a normal cell or an empty
slot: the swap is applied for v; when B < 0.

(2) If v; is a normal cell and v; is a sink cell: swap between v;
and v; leads to increase in DTC(v;) if v; is moved out of the
bounding box of CL(v;). Therefore, we first try to skip v; and
try the next cell or slot for swap. If there is no other choices,
we first check if v; is inside the bounding box of one of the
subsets in U. Because if it is, and we apply the swap, it can
be considered that v leaves CL(v;) and joins another cluster
(denoted as CL’(v;)). Therefore, if v; is within the bounding
box of a certain cluster in U, we calculate DTC’(v;) with
CL'(vj) after the swap, and we only apply the swap for v;
when B < 0 and DTC’ (vj) < DTC(v;).

(3) If v; is a sink cell and v} is a normal cell or empty slot: simi-
larly, if v} is within the bounding box of a certain cluster in
U, we calculate DTC’ (v;) after the swap, and we only apply
the swap for v; when B < 0 and DTC’(v;) < DTC(v;).

(4) If v; and v; are both sink cells: it can be considered that v;
and v; also swap their belonging clusters after exchanging
positions, and we have DTC(v;) + DTC(v;) = DTC'(v;) +
DTC’(vj). Thus, this swap would not increase the approxi-
mated subtree wirelength of CL(v;) and CL(v;), and we can
just apply the swap if B < 0. Fig. 5 gives an intuitive example
to illustrate this situation.

Swap
—_—

I Y o O o Y
O O O O O
I Y o Y o N
O 0O 0O O O

Figure 5: Swap between two clock sinks (highlighted in red
and yellow respectively).

Notice that we do not seek for a best cell that gives us maximum
improvement during cell swap. Instead, to save runtime, we apply
the swap for v; as soon as we find a cell v} that is suitable according
to our strategies.

4 Results and Discussions

We implement our detailed placement algorithm in C++, and the
experiments are conducted on a Linux machine with Intel i7 12700
2.1GHz CPU and 16GB memory. We test the performance of our
algorithm on the CLKISPD’05 benchmarks [12], which is used in
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Table 1: Statistics of CLKISPD’05 benchmarks.

Name | #Cells | #Registers | #Nets | #Macros
clkad1l | 210K 32K 221K 56
clkad2 | 255K 38K 266K 177
clkad3 | 451K 68K 466K 721
clkad4 | 494K 74K 516K 1329
clkbb1 | 278K 42K 284K 30
clkbb2 | 535K 84K 577K 923
clkbb3 | 1095K 165K 1123K 666
clkbb4 | 2169K 327K 2230K 639

recent work on clock-wirelength-driven global placement[9] as
well.

Table 1 shows the details of the CLKISPD’05 benchmarks, in
which 15% of standard cells are selected to be registers. We imple-
ment the ZST-DME algorithm[2] to generate the final zero-skew
clock tree in all our experiments. The wirelength of signal-nets
is estimated with HPWL, and wirelength of the final clock tree is
calculated by summing the Manhattan length of all clock edges.
Furthermore, we set @ = 0.6 in the cost function defined in Eq. (3)
throughout our experiments.

As stated in Section 1, our clock-wirelength-driven detailed
placement algorithm can be applied either as a part of a complete
clock-wirelength-driven placement flow, or independently on le-
galized results by signal-wirelength-driven global placement al-
gorithms. To evaluate the performance of our detailed placement
algorithm in both scenarios, we re-implement the state-of-the-art
clock-wirelength-driven global placement algorihtm [9] and ap-
ply NTUplace3 [4] as legalizer to produce two sets of legalized
placement solutions of CLKISPD’05 benchmarks as input of our
algorithm:

o CWL+WL-OPT: Placement solutions produced by 1) the orig-
inal global placer [9], and 2) NTUplace3 leaglizer;

e WL-OPT:Placement solutions produced by 1) modified global
placer [9] that turns off clock wirelength optimization, and
2) NTUplace3 leaglizer.

We first evaluate the performance of our detailed placement
algorithm when it takes CWL+WL-OPT as input. Since there is
no existing work on clock-wirelength-driven detailed placement,
we compare our algorithm with the detailed placement module of
NTUplace3, which is widely used in placement research [5, 14, 16],
and is still competitive in terms of signal-net wirelength optimiza-
tion on the ISPD’05 benchmark([17] compared with a recent work
on detailed placement [15]. The final clock tree wirelength (CIKWL),
HPWL and runtime results are presented in Table 2, and the normal-
ized ratios based on NTUplace3 is shown in the last row. Although
NTUplace3 is able to reduce HPWL by 4%, it damages the optimized
register locations obtained by clock-wirelength driven global place-
ment and causes 13% increase in clock wirelength. In contrast, our
algorithm is able to further improve clock wirelength by 6% over
clock-wirelength-driven global placement. Additionally, our placer
reduces signal-net wirelength by 2% when compared to CWL+WL-
OPT. Compared with NTUplace3, our placer obtains 19% shorter
final clock tree wirelength.
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Table 2: Comparison with NTUplace3 on clock-wirelength-driven global placement on CLKISPD’05 benchmarks.

Ge et al.

CWL+WL-OPT | CWL+WL-OPT + detailed placement by NTUplace3[4] | CWL+WL-OPT + our detailed placement flow
Benchmarks | CIkWL | HPWL | CIkWL | HPWL Runtime CIkWL | HPWL Runtime
(x100) | (x10°) | (x10°) | (x10°) (s) (x10%) | (x10%) (s)
clkad1 1.37 77.47 1.54 75.61 12 1.29 77.09 42.74
clkad2 1.53 85.79 1.67 84.46 14 1.43 85.44 56.95
clkad3 3.08 209.29 3.46 202.83 30 2.87 206.32 156.66
clkad4 3.17 193.66 3.69 187.63 31 3.00 191.78 168.47
clkbb1 1.65 94.05 1.85 92.19 17 1.54 93.93 70.33
clkbb2 3.40 158.02 4.10 148.76 54 3.21 155.62 281.51
clkbb3 5.47 393.53 6.57 367.48 89 5.20 385.86 878.23
clkbb4 12.04 879.42 13.75 846.30 176 11.15 865.43 3134.47
Avg 0.87x 1.04% 1.00x 1.00x 1.00x 0.81x 1.02% 6.91x

Table 3: Comparison with NTUplace3 on signal-wirelength-driven global placement on CLKISPD’05 benchmarks.

WL-OPT WL-OPT + detailed placement by NTUplace3[4] | WL-OPT + our detailed placement flow
Benchmarks | CIkWL | HPWL | CIkWL | HPWL Runtime CIkWL | HPWL Runtime
(x10%) | (x10%) | (x10%) | (x10°) (s) (x10%) | (x109) (s)

clkad1 1.66 74.68 1.67 73.89 11 1.47 74.97 43.05
clkad2 1.80 84.39 1.82 83.55 14 1.62 84.58 60.46
clkad3 3.72 198.47 3.74 196.02 25 3.31 197.89 143.44
clkad4 4.06 182.69 4.05 180.34 28 3.62 182.54 163.64
clkbb1 1.98 90.33 1.98 89.73 14 1.75 91.04 67.46
clkbb2 4.44 141.82 4.45 139.32 41 3.89 142.07 283.35
clkbb3 7.30 318.05 7.35 310.92 64 6.40 314.56 696.21
clkbb4 15.25 767.87 15.29 755.29 183 13.11 764.34 3361.9

Avg 0.99% 1.01x 1.00x 1.00x 1.00x 0.88% 1.01x 7.60X

To validate the effectiveness of our algorithm without clock-
wirelength-driven global placement, we further test the perfor-
mance of our detailed placer as an independent tool for post-legalizat
clock tree wirelength optimization by taking WL-OPT as input.
NTUplace3 is again chosen for comparison. Table 3 shows the cor-
responding CIkWL, HPWL and runtime results. As an independent
tool, our algorithm can reduce clock wirelength by 12% with no
increase in HPWL compared with the original placement solution.
Fig. 6 shows the comparison of register placement of clkadl in
WL-OPT before and after running our detailed placement flow.

Runtime overhead is a common problem in previous works on
clock-wirelength-driven global placement[9, 12]. And it is notice-
able that the runtime of our algorithm reported in Table 2 and
Table 3 is 6.91x and 7.6X longer than NTUplace3 respectively.

Fig. 7 shows the runtime breakdown of our algorithm on CLK-
ISPD’05 benchmarks. It can be seen that K-means clustering (see
Section 3.1) consumes over half of the runtime. In our present im-
plementation, we directly adopt the K-means clustering in ALGLIB,
and we believe that a more efficient implementation of K-means
clustering is available, but this would be our future work. In addition,
our algorithm can achieve further speedup by GPU acceleration
since the recent work [15] has shown how to use GPU to accelerate
key steps used in our work such as cell matching, local reordering
and global swap.
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5 Conclusion

In this paper, we present a clock-wirelength-driven detailed place-
ment algorithm. It is able to effectively reduce total wirelength of
the final clock tree by shrinking the subtrees with a cell matching
technique supported by subtree wirelength estimation. Further-
more, our placer includes clock-aware global swap and clock-aware
local reordering technique to reduce signal-net wirelength while
preserving the optimized sink locations. We propose a flow to com-
bine these techniques to realize co-opimization of signal-net and
clock-net wirelength. Experimental results on CLKISPD’05 bench-
marks show that our algorithm outperforms NTUplace3 in terms
of clock-net wirelength minimization when adopted both indepen-
dently and jointly with a clock-wirelength-driven global placer. Our
future work targets acceleration of our algorithm with GPUs and
extension towards other design objectives in CTS like buffering,
skew, and etc..

References

[1] ALGLIB. [n.d.]. https://www.alglib.net/

[2] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and A.B. Kahng. 1992. Zero skew
clock routing with minimum wirelength. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing 39, 11 (1992), 799-814.

Guohao Chen, Zheng Zeng, Benchao Zhu, Jiawei Li, Kun Wang, Jun Yu, and
Jianli Chen. 2023. Mixed-cell-height Placement with Minimum-Implant-Area
and Drain-to-Drain Abutment Constraints. In ACM/IEEE Design Automation
Conference. 1-6.

Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-
Wen Chang. 2008. NTUplace3: An Analytical Placer for Large-Scale Mixed-Size

B3

=


https://www.alglib.net/

Clock-Wirelength-Driven Detailed Placement

Figure 6: Register placement of clkad1 before and after run-
ning our clock-wirelength-driven placement flow. (a) Regis-
ter placement in WL-OPT. (b) Register placement after clock-
wirelength-driven detailed placement.

K-means Clustering

54.85%

1.09% IO

18.81%
20.06% Local Reordering
5.19%
Cell Matching
Global Swap

Figure 7: Runtime breakdown of our algorithm on CLK-
ISPD’05 benchmarks.

Designs With Preplaced Blocks and Density Constraints. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27, 7 (2008), 1228-1240.
Chung-Kuan Cheng, Andrew B. Kahng, llgweon Kang, and Lutong Wang. 2019.
RePlAce: Advancing Solution Quality and Routability Validation in Global Place-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 38, 9 (2019), 1717-1730.

[6] Yongseok Cheon, Pei-Hsin Ho, Andrew B. Kahng, Sherief Reda, and Qinke Wang.
2005. Power-aware placement. In ACM/IEEE Design Automation Conference.
795-800.

[7] Byungho Choi, Yonghwi Kwon, Umar Afzaal, and Youngsoo Shin. 2023. Multi-
source Clock Tree Synthesis Through Sink Clustering and Fast Clock Latency
Prediction. In IEEE International Symposium on Circuits and Systems. 1-4.

[8] Wing-Kai Chow, Jian Kuang, Xu He, Wenzan Cai, and Evangeline FY. Young.

2014. Cell density-driven detailed placement with displacement constraint. In

International Symposium on Physical Design. 3-10.

Jinghao Ding, Linhao Lu, Zhaoqi Fu, Jie Ma, Mengshi Gong, Yuanrui Qi, and

Wenxin Yu. 2023. Clock Aware Low Power Placement. In IEEE/ACM International

Conference on Computer-Aided Design. 01-08.

[10] Roy Jonker and Ton Volgenant. 1987. A shortest augmenting path algorithm for

dense and sparse linear assignment problems. Computing 38, 4 (1987), 325-340.

i}

[9

=

419

[11

[12

[13

[14

[15

[16

[17

[19

]

GLSVLSI °25, June 30-July 02, 2025, New Orleans, LA, USA

Myung-Chul Kim, Dong-Jin Lee, and Igor L. Markov. 2012. SimPL: An Effective
Placement Algorithm. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31, 1 (2012), 50-60.

Dong-Jin Lee and Igor L. Markov. 2012. Obstacle-Aware Clock-Tree Shaping
During Placement. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31, 2 (2012), 205-216.

Weiguo Li, Zhipeng Huang, Bei Yu, Wenxing Zhu, and Xingquan Li. 2024. Toward
Controllable Hierarchical Clock Tree Synthesis with Skew-Latency-Load Tree.
In ACM/IEEE Design Automation Conference.

Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z. Pan. 2021. DREAMPlace: Deep Learning Toolkit-Enabled
GPU Acceleration for Modern VLSI Placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 40, 4 (2021), 748-761.

Yibo Lin, Wuxi Li, Jiaqi Gu, Haoxing Ren, Brucek Khailany, and David Z. Pan.
2020. ABCDPlace: Accelerated Batch-Based Concurrent Detailed Placement on
Multithreaded CPUs and GPUs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39, 12 (2020), 5083-5096.

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang,
Chin-Chi Teng, and Chung-Kuan Cheng. 2015. ePlace: Electrostatics-based
placement using fast fourier transform and Nesterov’s method. ACM Transactions
on Design Automation of Electronic Systems 20, 2 (2015), 1-34.

Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz.
2005. The ISPD2005 placement contest and benchmark suite. In International
Symposium on Physical Design. 216—220.

Min Pan, N. Viswanathan, and C. Chu. 2005. An efficient and effective detailed
placement algorithm. In IEEE/ACM International Conference on Computer-Aided
Design. 48-55.

Yanfeng Wang, Qiang Zhou, Xianlong Hong, and Yici Cai. 2007. Clock-Tree
Aware Placement Based on Dynamic Clock-Tree Building. In IEEE International
Symposium on Circuits and Systems. 2040-2043.



	Abstract
	1 Introduction
	2 Problem Statement
	3 Clock-Wirelength-Driven Detailed Placment Algorithm
	3.1 Wirelength Estimation for Partial Clock Tree
	3.2 Clock-Wirelength-Driven Cell Matching
	3.3 Clock-Aware Local Reordering
	3.4 Clock-Aware Global Swap

	4 Results and Discussions
	5 Conclusion
	References

